US009224010B2

a» United States Patent (0) Patent No.. US 9,224,010 B2
Pawlowsky (45) Date of Patent: Dec. 29, 2015
(54) SECURE DOCUMENT CREATION FROM 7,624,373 B2 11/2009 Pandit et al.
POTENTIALLY UNSECURE SOURCE 200110059554 AL* 112001 Pk ot 709/311
arK etal. ...
TEMPLATES 2003/0061216 AL* 3/2003 MOSES ..vovovvvrrrirvverrrreren 707/9
2004/0205411 Al 10/2004 Hong et al.
(75) Inventor: Marc A. Pawlowsky, Ottawa (CA) 2004/0205573 A1* 10/2004 Carlsonetal. 715/513
(73) Assignee: International Business Machines (Continued)
Corporation, Armonk, NY (US) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this CN 1877525 A 12/2006
patent is extended or adjusted under 35 EP 1596 557 A2 11/2005
U.S.C. 154(b) by 591 days. (Continued)
(21) Appl. No.: 13/224,076 OTHER PUBLICATIONS
(22) Filed: Sep. 1,2011 Canadian Office Action from Application No. 2,711,855, dated Nov.
9, 2010 (4 pages).
(65) Prior Publication Data (Continued)
US 2013/0061126 Al Mar. 7, 2013
Primary Examiner — Charles Adams
o4
Gh IGn0t6gll 7730 (2006.01) (74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.
) IGJ0S6FCfI/64 (2013.01) (57) ABSTRACT
CPC GOGF 21/64 (2013.01); GOGF 17/30914 ~ An illustrative embodiment of a computer-implemented
method for generating secured documents using a source
(2013.01) g 2 2
(58) TField of Classification Search template is disclosed, in which a computer system re.ceives
None the source template; converts the source template into a
See application file for complete search history. sec.ured template comprising user-modlﬁable extension
points, wherein the secured template is not user-modifiable
(56) References Cited outside of the user-modifiable extension points; receives a
user input comprising one or more user-indicated modifica-
U.S. PATENT DOCUMENTS tions at one or more of the user-modifiable extension points;
. . modifies the secured template into a custom document with
2’222’8;; gz N ggggg Iggr?fﬂfé th' R 715/ 21% modifications to the one or more user-modifiable extension
7972753 B2 9/2007 Kaplan et al T points in accordance with the one or more user-indicated
7:373:595 B2 5/2008 Jones et al. modifications; and transforms the custom document into a
7,386,567 B2 6/2008 Manikutty et al. secured custom document that comprises the modifications to
7,389,473 Bl* 6/2008 Sawickietal. ... 715/255 the one or more user-modifiable extension points and that is in
;’347‘42"247‘51; g% N iggggg x}égggz eétzli 715/230 a format that is executable using a source schema associated
7.539.981 B2 52009 Eilebrecht with the source template.
7,559,080 B2 7/2009 Bhargavan et al.
7,607,172 B2 10/2009 Zurko et al. 24 Claims, 5 Drawing Sheets

Systom 300

Secure applcation
enironcrent 308

US 9,224,010 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2005/0138606 Al
2006/0059169 Al*
2006/0184548 Al*
2006/0293919 Al*
2008/0148298 Al
2009/0112901 Al
2010/0070562 Al*

6/2005
3/2006
8/2006
12/2006
6/2008
4/2009
3/2010

Basu et al.
Armishev

Meadowscccoevene

Morlet et al.
Chatterjee et al.
Friedman

Boyeretal. ...

FOREIGN PATENT DOCUMENTS

EP 2053 502 A2

WO

2007/058882 A2

4/2009
5/2007

... 707/100
... 707/100
........ 705/2

... 709/203

WO 2011/037500 Al 3/2011

OTHER PUBLICATIONS

Karl Mazurak et al., “ABASH: Finding Bugs in Bash Scripts,” PLAS
’07 Proceedings of the 2007 Workshop on Programming Languages
and Analysis for Security (2007) 10 pp. 105-114.

Lincoln D. Stein, “SBOX: Put CGI Scripts in a Box,” Proceedings of
the USENIX Annual Technical Conference, The USENIX Associa-
tion, Jun. 1999 (23 pages).

U.S. Appl. No. 13/164,571, filed Jun. 20, 2011, Marc A. Pawlowsky.
Su et al. “XEM: Managing the Evolution of XML Documents”,
International Workshop on Research Issues in Data Engineering, Apr.
2,2001, Heidelberg, Germany, (8 pages).

* cited by examiner

U.S. Patent Dec. 29, 2015 Sheet 1 of 5 US 9,224,010 B2

FIG. 1

-
(o)

SERVER

CLIENT

108

U.S. Patent Dec. 29, 2015 Sheet 2 of 5 US 9,224,010 B2

DATA PROCESSING SYSTEM 200

]
|
| DATA STORAGE DEVICES 216 :
l
]
|
PROCESSOR PERSISTENT |
! UNIT ME%(;RY STORAGE |
| 204 <8 208 |
]
| ZAN ZAN |
' :
I |
! |
| < 22 > |
| |
! |
! |
! |
! |
* COMMUNICATIONS INPUT/OUTPUT
[UNIT UNIT DISZI?IAAY :
' 210 212 — |
|
' |
' |

COMPUTER READABLE
MEDIA 220

PROGRAM
CODE
218

__/

COMPUTER PROGRAM PRODUCT
222

U.S. Patent Dec. 29, 2015 Sheet 3 of 5 US 9,224,010 B2

FIG. 3

System 300
Sour.ce application Secure application
environment 301 environment 305
Source Secured
template » template
302 = 306
[
I Source : T T
I schema | jAdministrator|
304 ‘ interface |
b e e e i 308 |
Lo e e e
i T T
! User | .
! : interface |t Us%r;gput
! | 312 | o
{ b e o e
—
=Y
i | validated | c
b custom ustom
D Lg—— document
.| document 314
b0 =
b e - —
Rviviivd |
y Validated | Secured .
} secured | custom L
custom 14— 4, i iment |7
y document | 316
|32 =

U.S. Patent Dec. 29, 2015 Sheet 4 of 5 US 9,224,010 B2

Ty W e Bete
sty Fustnuts frnte

FIG. 4

U.S. Patent Dec. 29, 2015

FIG. 5

Start
502

Sheet 5 of 5

193]
O

A 4

Convert the

Receive a source source template

Modify a source

Validate custom
document with
modified schemal
318

_— —

template into a
custom document
with modifications

516

) schema into
template i iNt0 a secured ——bl modified schema I
504 template 508
506 | =2 I
f— == i the
Receive user input Provide the { Provide the
compyising user- ' secured template | secured template |
indicated to a user inte?face to an administrator |
modifications ' 512 ' { interface i
514 ! - ! | 510 |
| VR — —d
D e I —
A 4
- T T
Modify secured Transform custom

document into a
secured custom
document
520

i

Validate secured
I custom document
with source
l schema
e

522

US 9,224,010 B2

US 9,224,010 B2

1
SECURE DOCUMENT CREATION FROM
POTENTIALLY UNSECURE SOURCE
TEMPLATES

TECHNICAL FIELD

This disclosure relates generally to generating documents
based on templates in a computer system.

BACKGROUND

Various desktop-based and web-based applications enable
users to select from among a variety of pre-defined templates
and modify one or more selected templates to generate a
document such as a report, a graph, or a chart, or a document
that includes one or more graphs or charts. These applications
may be collectively referred to as document template appli-
cations. The templates may be defined as documents written
in standardized protocols, such as Extensible Markup Lan-
guage (XML). Various applications may include tools such as
XML schemas and scripts for interpreting and executing
XML documents. However, the potential exists for such tools
to enable unsafe operations, such as accessing the file system
of'a computer or other computing resource. The potential for
such unsafe operations may expose a computing environment
to inadvertent errors or malicious activity, that may damage or
compromise the security of computing resources or of data
accessible to those computing resources.

BRIEF SUMMARY

According to one embodiment, a computer-implemented
method for generating secured documents using a source
template includes a computer system receiving the source
template. The computer system converts the source template
into a secured template comprising user-modifiable extension
points, wherein the secured template is not user-modifiable
outside of the user-modifiable extension points. The com-
puter system receives user input comprising one or more
user-indicated modifications at one or more of the user-modi-
fiable extension points. The computer system modifying the
secured template into a custom document with modifications
to the one or more user-modifiable extension points in accor-
dance with the one or more user-indicated modifications. The
computer system transforming the custom document into a
secured custom document that comprises the modifications to
the one or more user-modifiable extension points and thatis in
a format that is executable using a source schema associated
with the source template.

According to another embodiment, a computer system for
generating secured documents using a source template is
disclosed. The computer system includes one or more pro-
cessors, one or more computer-readable memory elements
and one or more computer-readable, tangible data storage
devices. The computer system includes program instructions,
stored on at least one of the one or more data storage devices
for execution by at least one of the one or more processors, to
receive the source template. The computer system includes
program instructions, stored on at least one of the one or more
data storage devices for execution by at least one of the one or
more processors, to convert the source template into a secured
template comprising user-modifiable extension points,
wherein the secured template is not user-modifiable outside
of'the user-modifiable extension points. The computer system
includes program instructions, stored on at least one of the
one or more data storage devices for execution by at least one
of the one or more processors, to receive a user input com-

10

15

20

25

30

35

40

45

55

60

65

2

prising one or more user-indicated modifications at one or
more of the user-modifiable extension points. The computer
system includes program instructions, stored on at least one
of the one or more data storage devices for execution by at
least one of the one or more processors, to modify the secured
template into a custom document with modifications to the
one or more user-modifiable extension points in accordance
with the one or more user-indicated modifications. The com-
puter system includes program instructions, stored on at least
one of the one or more data storage devices for execution by
at least one of the one or more processors, to transform the
custom document into a secured custom document that com-
prises the modifications to the one or more user-modifiable
extension points and that is in a format that is executable using
a source schema associated with the source template.

According to another embodiment, a computer program
product for generating secured documents using a source
template is disclosed. The computer program product
includes one or more computer-readable data storage devices
having computer-readable program instructions stored on the
one or more computer-readable tangible storage devices. The
computer-readable program instructions include computer-
readable program instructions to receive the source template;
computer-readable program instructions to convert the source
template into a secured template comprising user-modifiable
extension points, wherein the secured template is not user-
modifiable outside of the user-modifiable extension points;
computer-readable program instructions to receive a user
input comprising one or more user-indicated modifications at
one or more of the user-modifiable extension points; com-
puter-readable program instructions to modify the secured
template into a custom document with modifications to the
one or more user-modifiable extension points in accordance
with the one or more user-indicated modifications; and com-
puter-readable program instructions to transform the custom
document into a secured custom document that comprises the
modifications to the one or more user-modifiable extension
points and that is in a format that is executable using a source
schema associated with the source template.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

For a more complete understanding of this disclosure, ref-
erence is now made to the following brief description, taken
in conjunction with the accompanying drawings and detailed
description, wherein like reference numerals represent like
parts.

FIG. 1 is a block diagram of an exemplary network of
computer systems operable for various embodiments of the
disclosure;

FIG. 2is ablock diagram of an exemplary computer system
operable for various embodiments of the disclosure;

FIG. 3 is a block diagram of a secure document creation
system in accordance with various embodiments of the dis-
closure;

FIG. 4 is a screenshot of a secured custom document in the
process of being created; and

FIG. 5 is a flowchart of a process using the system of FIG.
3 in accordance with one embodiment of the disclosure.

DETAILED DESCRIPTION

There is set forth herein a computer system, method, and
program product for use in creating secure documents from
potentially unsecure templates. Various embodiments dis-
closed herein may enable a user to use multiple document

US 9,224,010 B2

3

template applications together for generating reports, graphs,
or charts, to leverage the particular strengths of each of mul-
tiple document template applications, while providing a
single security framework to address any potential security
weaknesses in each of the multiple applications, among vari-
ous other advantages.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a device, a system,
a method, or a computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer-readable data
storage devices that include computer-readable medium(s)
having computer readable program code embodied thereon.
For example, a computer-readable data storage device may be
embodied as a tangible device that may include a tangible,
non-transitory data storage medium, as well as a controller
configured for receiving instructions from a resource such as
a central processing unit (CPU) to retrieve information stored
at one or more particular addresses in the tangible, non-
transitory data storage medium, and for retrieving and pro-
viding the information stored at those particular one or more
addresses in the data storage medium.

The data storage device may store information that encodes
both instructions and data, for example, and may retrieve and
communicate information encoding instructions and/or data
to other resources such as a CPU, for example. The data
storage device may take the form of a main memory compo-
nent such as a hard disc drive or a flash drive in various
embodiments, for example. The data storage device may also
take the form of another memory component such as a RAM
integrated circuit or abuffer or a local cache in any of a variety
of forms, in various embodiments. This may include a cache
integrated with a controller, a cache integrated with a graphics
processing unit (GPU), a cache integrated with a single
instruction multiple data (SIMD) processor, a cache inte-
grated with a bus or communication fabric, a cache integrated
with a multi-chip die, a cache integrated within a CPU, pro-
cessor registers within a CPU, or processor registers within a
particular arithmetic logic unit (AL U) of a processor, as vari-
ous illustrative examples. The data storage apparatus or data
storage system may also take a distributed form such as a
redundant array of independent discs (RAID) system or a
cloud-based data storage service, and still be considered to be
a data storage component or data storage system as a part of
or a component of an embodiment of a system of the present
disclosure, in various embodiments.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable storage medium, for example. A
computer readable storage medium may be, for example, but
is not limited to, an electronic, magnetic, optical, electromag-
netic, infrared, electro-optic, heat-assisted magnetic, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific illustrative, non-
exhaustive examples of the computer readable storage
medium include the following: an electrical connection hav-
ing one or more wires, a portable computer diskette, a hard
disc, a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), a portable digital

20

40

45

50

55

4

versatile disc read-only memory (DVD-ROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this disclo-
sure, a computer readable storage medium may be any tan-
gible medium that can contain or store a program for use by or
in connection with an instruction execution system, appara-
tus, or device, for example.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to radio frequency (RF) or other wireless,
wireline, optical fiber cable, etc., or any suitable combination
of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++, or the like, or conventional procedural pro-
gramming languages such as the C programming language or
similar programming languages, or functional languages
such as Haskell, Common Lisp, or Clojure, or multi-para-
digm languages such as Python, Ruby, or Scala, among a
variety of illustrative examples. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer, or entirely
on one or more remote computers or servers, among various
examples. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of net-
work, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through a packet data network
such as the Internet using an Internet Service Provider).

In various illustrative embodiments, various software
applications, modules, or other software elements may be
executed in connection with a browser being executed on a
client computing device that interacts with one or more web
server applications that may be running on one or more server
devices and may be executing or accessing other software
applications, modules, databases, data stores, or other soft-
ware elements or data structures. A browser may be executed
on a client computing device and may access web applica-
tions from the one or more web server applications, for
example. Various content within the web pages may be ren-
dered or executed in or in association with the web browser
using HTML, HTMLS, CSS, CSS3, JavaScript, XML, AJAX,
JSON, and various other languages or technologies, while
other content may be provided by software applications,
modules, or other elements executed on the one or more web
servers and written in any programming language and/or
using or accessing any software elements, data structures, or
technologies, in various illustrative embodiments.

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, devices, systems, and computer program products
according to embodiments of the invention. Each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable computer system to pro-
duce a machine, such that the instructions, which execute via
the processor of the computer or other programmable data
processing apparatus, may create means for implementing
the functions or acts specified in the flowchart and/or block
diagram block or blocks.

US 9,224,010 B2

5

These computer program instructions may also be stored in
a computer-readable medium that can be executed by a com-
puting system such as a computer, other programmable data
processing apparatus, or other devices to direct the computing
system to function in a particular manner, such that the
instructions stored in the computer-readable medium produce
an article of manufacture including instructions which imple-
ment the function or act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer-implemented pro-
cess such that the instructions which execute on the computer
or other programmable apparatus provide processes for
implementing the functions or acts specified in the flowchart
and/or block diagram block or blocks.

With reference now to the figures and in particular with
reference to FIGS. 1-2, exemplary diagrams of data process-
ing environments are provided in which illustrative embodi-
ments may be implemented. It should be appreciated that
FIGS. 1-2 are only exemplary and are not intended to assert or
imply any limitation with regard to the environments in which
different embodiments may be implemented. Many modifi-
cations to the depicted environments may be made.

FIG. 1 depicts a pictorial representation of a network of
computer systems in which illustrative embodiments may be
implemented. Network computer system 100 is a network of
computers in which the illustrative embodiments may be
implemented. Network computer system 100 contains net-
work 102, which is the medium used to provide communica-
tions links between various devices and computers connected
together within network computer system 100. Network 102
may include connections, such as wire, wireless communica-
tion links, or fiber optic cables.

In the depicted example, server 104 and server 106 connect
to network 102 along with storage unit 108. In addition,
clients 110, 112, and 114 connect to network 102. Clients
110, 112, and 114 may be, for example, personal computers
or network computers. In the depicted example, server 104
provides data, such as boot files, operating system images,
and applications to clients 110, 112, and 114. Clients 110,
112, and 114 are clients to server 104 in this example. Net-
work computer system 100 may include additional servers,
clients, and other devices not shown.

In the depicted example, network computer system 100 is
the Internet with network 102 representing a worldwide col-
lection of networks and gateways that use the Transmission
Control Protocol/Internet Protocol (TCP/IP) suite of proto-
cols to communicate with one another. At the heart of the
Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of
thousands of commercial, governmental, educational and
other computer systems that route data and messages. Of
course, network computer system 100 also may be imple-
mented as anumber of different types of networks, such as for
example, an intranet, a local area network (LAN), or a wide
area network (WAN). FIG. 1 is intended as an example, and
not as an architectural limitation for the different illustrative
embodiments.

FIG. 2 depicts a block diagram of an exemplary computer
system 200 operable for various embodiments of the disclo-
sure. In this illustrative example, computer system 200
includes communications fabric 202, which provides com-
munications between processor unit 204, memory 206, per-
sistent storage 208, communications unit 210, input/output

30

35

40

45

55

6

(I/0) unit 212, and display 214. Computer system 200 can be
a workstation, server, mainframe computer, desktop com-
puter, notebook or laptop computer, tablet computer, mobile
phone, wireless device, set-top box, or other programmable
data processing apparatus, or a portion of any of the above.
Other possibilities for computer system 200 are possible,
including a computer having capabilities other than those
described herein and possibly beyond those capabilities.

Communications fabric 202 may include a dedicated sys-
tem bus, a general system bus, multiple buses arranged in
hierarchical form, any other type of bus, bus network, switch
fabric, or other interconnection technology. Communications
fabric 202 can support transfer of data, commands, and other
information between various subsystems of computer system
200.

Processor unit 204 executes instructions for software that
may be loaded into memory 206. Processor unit 204 may be
a set of one or more processors or may be a multi-processor
core, depending on the particular implementation. Further,
processor unit 204 may be implemented using one or more
heterogeneous processor systems in which a main processor
is present with secondary processors on a single chip. As
another illustrative example, processor unit 204 may be a
symmetric multi-processor system containing multiple pro-
cessors of the same type. Processor unit 204 may be orinclude
a reduced instruction set computing (RISC) microprocessor,
an x86 compatible processor, or any other suitable processor.
In other embodiments, processor unit 204 may comprise one
or more CPUs or other processors distributed across one or
more locations, such as on a client and a server, for example.

Memory 206 and persistent storage 208 are examples of
data storage devices 216. A storage device is any piece of
hardware that is capable of storing information, such as, for
example and without limitation, data, program code in func-
tional form, and/or other suitable information either on a
temporary basis and/or a permanent basis. Memory 206, in
these examples, may be, for example, a random access
memory or any other suitable volatile or non-volatile storage
device. Persistent storage 208 may take various forms
depending on the particular implementation. For example,
persistent storage 208 may contain one or more components
or devices. For example, persistent storage 208 may be a hard
disc drive, a flash memory, a rewritable optical disk, a rewrit-
able magnetic tape, or some combination of the above. The
media used by persistent storage 208 also may be removable.
For example, a removable or external hard disc drive may be
used for persistent storage 208. Memory 206 and persistent
storage 208 may be arranged in a hierarchy of caches and in
other memory devices, in a single physical location, or dis-
tributed across a plurality of physical systems in various
forms. Memory 206 can also serve as a store for a governance
module, a deployment module, an asset management reposi-
tory, a configuration management database, and other mod-
ules and elements. Various embodiments may be imple-
mented in a distributed computing environment having a
plurality of computers communicating via a suitable network
102 of network computer system 100, as in FIG. 1.

Communications unit 210, in these examples, provides for
communications with other computer systems or devices. In
these examples, communications unit 210 includes a network
interface card. Communications unit 210 may provide com-
munications through the use of either or both of physical and
wireless communications links. Communications unit 210
can be used for operationally connecting many types of
peripheral computing devices to computer system 200, such
as printers, bus adapters, and other computers. Communica-
tions unit 210 may include a network interface that provides

US 9,224,010 B2

7

a physical interface to a network 102 as in FIG. 1, such as a
local area network (LAN) or the Internet. Communications
unit 210 may include any type of adapter that provides an
interface between computer system 200 and network 102,
such as an Ethernet adapter, or a Token Ring adapter, or a
modem that can be connected to a transmission system such
as a telephone line, for example. In another example, com-
puter system 200 can be connected to a network server via a
LAN using an appropriate network protocol and the network
server can in turn be connected to the Internet.

Input/output unit 212 allows for input and output of data
with other devices that may be connected to computer system
200. For example, input/output unit 212 may provide a con-
nection for user input through a keyboard, a mouse, a touch-
screen, and/or some other suitable input device. Further,
input/output unit 212 may send output to a printer. Display
214 provides a mechanism to display information to a user.
Display 214 may include a video display device, which may
be an LCD display, a cathode-ray tube display, or a display
based upon other suitable display technology. Display 214
may also include a display interface that supports the video
display device.

Storage devices 216 are in communication with processor
unit 204 through communications fabric 202. Storage devices
216 may store instructions for the operating system, applica-
tion programs, application data, and other data. In these illus-
trative examples the instructions are in a functional form on
persistent storage 208. These instructions may be loaded into
memory 206 for execution by processor unit 204.

The operating system may provide functions such as
device interface management, memory management, and
multiple task management. Other programs can include
server software applications in which communications unit
210 includes a network interface that interacts with the server
software applications to enable computer system 200 to func-
tion as a network server 104 via network 102 as in FIG. 1. In
other examples, data storage devices 216 may store applica-
tions that enable computer system 200 to act as a client 110
and interact with server 104 over network 102 as in FIG. 1.

Processor unit 204 may perform the processes of the vari-
ous embodiments by using computer-implemented instruc-
tions, which may be located in a memory, such as memory
206. These instructions may be referred to as program code,
computer-usable program code, computer-executable
instructions, or computer-readable program code that may be
read and executed by a processor in processor unit 204. The
program code in the different embodiments may be embodied
on different physical or tangible computer-readable media,
such as memory 206 or persistent storage 208.

Program code 218 is located in a functional form on com-
puter readable media 220 that is selectively removable and
may be loaded onto or transferred to computer system 200 for
execution by processor unit 204. Program code 218 and com-
puter readable media 220 are included in computer program
product 222 in these examples. In one example, computer
readable media 220 may be in a tangible form, such as, for
example, an optical or magnetic disc that is inserted or placed
into a disc drive or other device that is part of persistent
storage 208 for transfer onto a storage device, such as a hard
disc drive that forms another part of persistent storage 208. In
a tangible form, computer-readable media 220 also may take
the form of a storage media of persistent storage, such as a
magnetic hard disc drive, a CD-ROM or DVD-ROM, a thumb
drive, a flash memory, or other removable or non-removable
media that is connected to computer system 200. The tangible

10

15

20

25

30

35

40

45

50

55

60

65

8

form of computer-readable media 220 may also, in some
embodiments, be referred to as computer-recordable storage
media.

Alternatively, program code 218 may be transferred to
computer system 200 from computer-readable media 220
through a communications link to communications unit 210
and/or through a connection to input/output unit 212. The
communications link and/or the connection may be physical
or wireless in various illustrative examples. The computer-
readable media also may take the form of non-tangible media,
such as communications links or wireless transmissions con-
taining the program code.

In some illustrative embodiments, program code 218 may
be downloaded over a network to persistent storage 208 from
another device or computer system for use within computer
system 200. For instance, program code stored in a computer-
readable storage medium in a server computer system may be
downloaded over a network from the server to computer
system 200. The computer system providing program code
218 may be a server computer, a client computer, or some
other device capable of storing and transmitting program
code 218.

According to an illustrative embodiment using computer
system 200 of FIG. 2 as an example, processor unit 204
executes a computer-implemented process for generating
secured documents created using a source template. Proces-
sor unit 204 receives a source template and an associated
source schema through communications unit 210, input/out-
put unit 212, or storage devices 216. Processor unit 204
converts the source template into a secured template compris-
ing user-modifiable extension points, wherein the template is
not user-modifiable outside of the extension points. The
secured template may be stored in storage devices 216. Pro-
cessor unit 204 may provide the secured template to a user
interface, which may be part of input/output unit 212 or may
be accessed through communications unit 210. Processor unit
204 receives, through input/output unit 212 or communica-
tions unit 210, a user input comprising one or more user-
indicated modifications at one or more of the extension
points. Processor unit 204 modifies the secured template into
a custom document with modifications to the one or more
extension points in accordance with the user-indicated modi-
fications. Processor unit 204 transforms the custom document
into a secured custom document that comprises the modifi-
cations to the one or more extension points and that is in a
format that is executable using the source schema. The user
input, custom document, and secured custom document may
also be stored in storage devices 216.

In an alternative embodiment, program code 218 of FIG. 2
containing the computer-implemented process may be stored
within computer readable media 220 as computer program
product 222. In another illustrative embodiment, the process
for generating secured documents created using a source
template may be implemented in a system or apparatus com-
prising a communications fabric 202, a communications unit
210 connected to the communications fabric 202, an input/
output unit 212 connected to the communications fabric 202,
a display 214 connected to the communications fabric 202, a
processor unit 204 connected to the communications fabric
202, and a memory 206 that contains computer executable
program code and is connected to the communications fabric
202. The processor unit 204 of the apparatus executes the
computer executable program code to direct the apparatus to
perform the process.

FIG. 3 depicts a block diagram of a system 300 for gener-
ating secured documents in accordance with various embodi-
ments of the disclosure. System 300 comprises a number of

US 9,224,010 B2

9

interconnected components working in cooperation with an
underlying operating system software and hardware, such as
described above with reference to FIGS. 1 and 2. System 300
comprises a source application environment 301 and a secure
application environment 305. System 300 components
include source template 302, secured template 306, user
interface 312, custom document 314, and secured custom
document 316. System 300 receives user input 310 via user
interface 312. Source schema 304, administrator interface
308, user interface 312, modified schema 318, validated cus-
tom document 320, and validated secured custom document
322 are optional components and may or may not be included
in different embodiments of system 300.

Source application environment 301 comprises source
template 302, source schema 304, secured custom document
316, and validated secured custom document 322. Secure
application environment 305 comprises secured template
306, administrator interface 308, user interface 312, custom
document 314, modified schema 318, and validated custom
document 320.

System 300 may be comprised entirely in secure applica-
tion environment 305, which receives source template 302
and user input 310 as inputs, and generates secured custom
document 316 as its output. Source application environment
301 may or may not be included as part of system 300 in
various embodiments. Processes performed by system 300
may be completed with the generation of secured custom
document 316 as the output of secure application environ-
ment 305.

A specific example implementation of system 300 may use
IBM SPSS®, a desktop computer application program for
statistical analysis, as source application environment 301,
and IBM Cognos®, a web-based computer application pro-
gram for business intelligence, as secure application environ-
ment 305 that may be used to create secured custom SPSS
documents based on SPSS templates.' This example may be
implemented in IBM Cognos to take a visualization template
generated by SPSS Visualization Designer and programmati-
cally replace parts of it under a report author’s direction. For
example, the visualization template may indicate a default
that a title is to be red, but the report author can indicate that
the title should instead be blue. SPSS may generate reports
based on the visualization template. IBM Cognos may use
SPSS and a predefined template to generate a chart. A system
administrator may create standard visualization templates,
and report authors can then override parts of the template, in
a secure manner, to customize it on a report by report basis. In
this example implementation, IBM SPSS may provide an
example of source application environment 301 in FIG. 3,
while IBM Cognos may provide an example of secure appli-
cation environment 305 in FIG. 3.

LIBM, SPSS, and Cognos are trademarks of International Business Machines
Corp., registered in the U.S. and many jurisdictions worldwide.

Various other examples may be used in cases where a
source tool provides a source template such as an XML docu-
ment that a user wants to modify based on instructions from
an unsecured source. The source tool is associated with
another source tool to process the document. The interpreta-
tion of the document will provide access to system resources
that may be harmful, in the absence of a method of generating
secured documents using the source template. For example,
the reading of files is based on a path in the file system. Thus,
generating secured documents using the source template
requires a method that only allows specific parts of the source
template to be changed. For example, it would be safe to allow
auser to change a color in the template, but not to allow a user
to modify a file path. The method for generating secured

10

15

20

25

30

35

40

45

50

55

60

65

10

documents using the source template may be done without
modifying the tool for creation the XML document, nor the
tool for interpreting the document. The XML content that is to
be changed from the source template may include attributes,
ortext, or elements which may contain attributes, text or other
elements. For example, file paths in the source template are
made non-user-modifiable in the secured template. The
secured template may allow a report author to give only a file
name, instead of a file path, and the secure modification
application program may define the file path for the file name
automatically and in a secured way.

The source template may be modified to indicate which
parts may be changed, such as in a secured template compris-
ing user-modifiable extension points. The source schema may
be modified to be able to validate the modified document. A
tool may be provided that will take the modified document,
such as the secured template, and the user-indicated modifi-
cations, and produce a secured custom document that can be
processed by the source interpreter. The source schema may
be modified to accept the extensions indicating the modified
parts. By controlling the modification points, an untrusted
client cannot insert malicious code.

Various implementations may include a process for modi-
fying an XML document to indicate which parts may be
substituted; a process for modifying an XML schema to vali-
date documents created with a modified XML document; a
process for making substitutions in the modified XML docu-
ment; a process for transforming a modified XML document
having substitutions to a document that may be understood
with the modified XML schema; and a process for allowing
the modification of a source XML document by an untrusted
party such that all modifications are safe, for example.

Methods such as these may be contrasted with accepting a
whole template, such as entire XML document, passed in by
aclient for interpretation. Since such a document may contain
dangerous content, it would be necessary to be able to fully
understand the document and ensure that there is no danger-
ous content. This is akin to understanding Visual Basic scripts
in a Microsoft Word document, a problem space that still
allows malicious content in current practical implementa-
tions.

Further details of one example implementation using IBM
SPSS and IBM Cognos are provided as follows. This example
implementation includes modifying a schema to indicate
extension points; creating an SPSS visualization template;
running a tool that changes the SPSS visualization template to
an IBM Cognos visualization template; selecting parts of the
template that may be customized; creating an IBM Cognos
report specification; and using the IBM visualization tem-
plate to generate an SPSS visualization template.

A template designer may modify a schema to indicate
extension points. The template designer manually modifies
XML to convert a visualization template from SPSS to IBM
Cognos. An XML schema is desirable in order to minimize
the chances of mistakes being made in the creation of the IBM
Cognos visualization template. The implementation
described in this example is done through a program to allow
for easy changes in what is extensible in a consistent manner.
In addition it would allow for easy changes if the SPSS
visualization template schema changes; rerunning the pro-
gram would generate a new IBM Cognos visualization tem-
plate that is compatible with the new SPSS visualization
template schema.

In this example, steps are provided for created a schema
based on copying and then modifying the existing SPSS

US 9,224,010 B2

11

visualization template schema. Other examples may include
different, more, or fewer steps, or a re-ordering of the steps
provided here.

The first step includes moditying the targetNamespace of
the schema from the SPSS namespace to the IBM Cognos
namespace. All references to the SPSS namespace are
changed to the IBM Cognos namespace. The second step
includes examining the nodes in the schema and finding the
parts that represent XML nodes in the generated documents
where modification is permitted. For example, the value of an
attribute “color2” can be modified by a report author, if the
template author permits them to do so.

For the nodes that can be modified, this step includes add-
ing an attribute in the node definition indicating the type. For
example,
<xs:attribute name="“color2” type="“vis:color”.>
becomes
<xs:attribute name="color2”

sts_property Type="“color”/>.

The third step includes expanding references in the schema
in place. For example,
<xs:attributeGroup ref="vis:lineAttributes”/>
is replaced with all the attribute definitions that make up the
group. Simple types are modified to contain an element that
will contain the original simple type. For example,
<xs:element name="fo0” type="xs:string”/>
becomes

type="vis:color” vis:

<xs:element name="foo™>
<xs:complexType>
<Xs:sequence>
<xs:element name="sts__value” type="xs:string”/>
<Xs:sequence>
<xs:/complexType>
</xs:element>

Attribute declarations are converted to element declara-
tions that will hold the same type. For example:
<xs:attribute name="lang” type="xs:language’>
becomes

<xs:element name="lang” minOccurs="0">
<xs:complexType>
<Xs:sequence>
<xs:element name="sts_ value” type="xs:language”/>
</xs:sequence™>
</xs:complexType>
</xs:element>

Style elements which are references to common styles
defined within a visualization template, such as in SPSS, are
now modified so the style elements are under the element they
are modifying. This allows for there to be multiple elements
that referenced the same style not to allow the same property
to be customizable. For example, in an SPSS visualization
template, there may be an X-axis and a Y-axis that referenced
the same style, thathad a color attribute set to red. In the SPSS
visualization template there could be one definition for the
style, and both the X and Y axis would refer to the style. By
requiring the styles be in a one-to-one relationship with the
elements they are styling, an IBM Cognos template author
can allow just the X-axis color to be customizable, while not
allowing the Y-axis color to be changed. An alternative would
be for the template author to allow both axes to be customi-
zable, and the report author to customize each axis differently.

The process further includes adding element definitions for
localized customizable names. IBM Cognos template authors

15

25

30

35

40

45

50

55

60

65

12

need the ability to indicate in a meaningful manner what are
the properties that may be customized by a report author. To
do this the schema is modified to allow localized names
wherever a customizable node was detected. This may be
done by adding the vis:sts_names element like in the example
below:

<xs:element name="dimension” minOccurs="0">
<xs:complex Type>
<Xs:sequence>
<xs:element ref="vis:sts__names” minOccurs="0"/>
<xs:element name="sts_ value”
type="“xs:nonNegativeInteger”/>
</xs:sequence™>
</xs:complexType>
</xs:element>

For creating the SPSS visualization template, using the
tools provided in SPSS, a chart designer creates a Visualiza-
tion Template that will be the basis of the template that can be
customized in IBM Cognos. The process then includes run-
ning a tool to change SPSS Visualization Template to IBM
Cognos Visualization template. An IBM Cognos tool con-
verts an SPSS Visualization template into an IBM Cognos
visualization template so it matches the schema created ear-
lier. The namespace of the document is changed to the IBM
Cognos namespace; schema location is removed from the
document; sts_names elements are inserted into the docu-
ment wherever a localized name to be displayed to the report
author is permitted; style references are inlined under the
elements they are modifying; attributes are converted to child
elements under the element that they belonged to; and ele-
ments that may be customizable are then marked as such. For
example, all elements with the name “color” can be custom-
ized. Under such elements, a child element sts_propertyType
is created with text containing “color” to indicate the type of
the content that may be customized.

For purposes of external reference later on, the customiz-
able element is given an id attribute if it does not already have
one. For elements that are allowed sts_names, a default name
is given. For example:

<color>
<sts__names>
<sts__name>
<sts__locale/>
<sts__displayName>colord</sts__displayName>
</sts__name>

</sts__names>

The process further includes selecting parts of a template
that may be customized. The IBM Cognos template author
now can edit the XML created earlier using an XML Editor.
The template author can customize the sts_names to add
additional locales and change the default name. In addition
the template author should remove the sts_property Type ele-
ments for the parts of the template they do not want a report
author to customize. The template author may use an autho-
rization not available to an ordinary report author user, such as
an administrator authorization, to select initially customiz-
able or user-modifiable extension points to make non-user-
modifiable.

The computing system may then receive user input from a
report author to create an IBM Cognos report specification. A
report author may use authoring tools, such as IBM Cognos
Report Studio, to create an IBM Cognos report specification.

US 9,224,010 B2

13

A report author may select a customizable chart, that includes
in its definition name/value pairs consisting of the identifiers
and new values of customizable items. The authoring tool
uses the localized display names when presenting choices to
the report author.

The process further includes using an IBM Cognos visu-
alization template to generate an SPSS visualization tem-
plate. When the report specification is executed, the named
IBM Cognos visualization template is retrieved. The values
of'the customizable items may be validated against the types.
For example, the value “blue” would be accepted for a color
but not for a dimension. The customized values provided then
replace the existing values in the template.

The template is the transformed into an SPSS template by
reversing the steps described earlier. The namespace is
changed back to SPSS; styles are moved from being under an
element to under the root; attributes are created from the child
elements that represent them; and additions to the schema
such as sts_names are removed from the document. The SPSS
visualization template is then used as part of an SPSS script
and executed, generating a visualization that is part of the
report output.

An example implementation is provided as follows for a
job flow in which a report author changes a chart title. This
example uses an SPSS visualization template that may be
installed as part of an IBM Cognos Statistics product. The
process for converting the SPSS visualization schema to the
IBM Cognos Statistics visualization schema is done as part of
a build step by running a conversion tool. IBM SPSS Visual-
ization Designer may be a different product that is sold sepa-
rately from IBM Cognos Statistics, and may take the form of
a desktop application. A chart designer may design a tem-
plate, and save the template as an XML document.

FIG. 4 depicts a screenshot 400 of a document in the
process of being created based on a template, with some data
added and modifications already made from a template by a
document designer, while other elements remain in default
values provided with the template, such as the title line 410,
which reads “Your title here”. This element may, for example,
be generated in the source template with the following lines of
XML:

<label id="label_ 3427 purpose="title” style="labelStyle5”>
<text id="text__3428”>Your title here</text>
</label>

The IBM Cognos Statistic visualization template may be
generated using an application program that may be written in
Java, as an illustrative example, and that may convert the
source template into a secured template, including converting
the XML for the title element from the source template into
the following XML in the secured template:

<label>

<text id="text3">
<sts__names>
<sts__name>
<sts__locale/>
<sts_ displayName>text3</sts_ displayName>
</sts__name>
</sts__names>
<sts_ propertyType>text</sts_propertyType>Your title
here</text>
</label>

10

15

20

25

30

35

40

45

50

55

60

65

14

The template author leaves the sts_propertyType element,
generated as part of the secured template, in place, since she
wants the title to be replaceable. However, the title may be
translated for report authors into a more friendly name. Using
an XML editor the template author changes the generated
XML. The modified XML meets the schema that was gener-
ated.

<text id="text3"”>
<sts_ names>
<sts__name>
<sts__locale>en</sts__locale>
<sts__displayName>Main Title</sts__displayName>
</sts__name>
<sts__name>
<sts__locale>es</sts__locale>
<sts__displayName>Principal Tirtulo</stsidisplayName>
</sts__name>
<sts__name>
<sts__locale/>
<sts__displayName>Main Title</sts__displayName>
</sts__name>
</sts__names>
<sts_ property Type>text</sts_ property Type>Your title here</text>

The template author passes the template to the system
administrator who then copies it into the IBM Cognos instal-
lation directory.

Report authors can now create a chart using Report Studio.
When the report author selects the chart they are presented
with a list of properties. A Spanish-speaking author may see
the property named “Principal Titulo” whose value is “Your
title here”. An English-speaking author may see the property
named “Main Title” in the same place, while a French-speak-
ing author may see the property named “titre principal”. The
author changes the value from “Your title here” to “Price per
word count”. Similarly, authors speaking different languages
may see other user-modifiable properties in their own lan-
guages, such as a color for an element of the chart. The
program may present a Spanish-speaking author with a prop-
erty called “color” and a value of “morado”, while in the same
place it presents an English-speaking report author with a
property called “color” and a value of “purple”, or a French-
speaking report author with a property called “couleur” and a
value of “pourpre”. The report author may replace the value
with a different value in her own language, so for instance, a
French-speaking report author may replace “pourpre” with
“noir” for a property of an element of the chart such as the
X-axis.

Returning to the example of the report author replacing
“Your title here” with “Price per word count”, when the report
is executed, a name value map is sent to the Cognos Statistics
application program that contains property value pairs, such
as (“text3”, “Price per word count”), that constitute user-
indicated modifications. The Cognos Statistics application
program replaces the property and generates a new, secured
template, after verifying that the property value is valid for the
identified type.

<text id="text3"”>
<sts_ names>

<sts__name>
<sts__locale>en</sts__locale>
<sts__displayName>Main Title</sts__displayName>

</sts__name>

<sts__name>
<sts__locale>es</sts__locale>
<sts__displayName>Principal Tirtulo</stsidisplayName>

US 9,224,010 B2

15

-continued

</sts_name>
<sts__name>
<sts__locale/>
<sts_displayName>Main Title</sts__displayName>
</sts_name>
</sts_names>
<sts_ property Type>text</sts_ property Type>verbosity value</text>

The new template is checked against the generated schema,
as part of the security measures. The statistics service tem-
plate is then converted back to an SPSS template, where is it
verified against the original schema.

<label id="label_ 3427 purpose="title” style="labelStyle5”>
<text id="text__3428>verbosity value</text>
</label>

The Cognos application program then calls SPSS to gen-
erate the chart with the new values, thereby creating a secured
custom document in SPSS based on the custom document
modified from the secured template in Cognos.

FIG. 5 depicts a flowchart of a process 500 for generating
secured documents using a source template, in accordance
with an example embodiment. Process 500 is an example of a
process for generating secured documents using a source
template using system 300 of FIG. 3. The elements of process
500 are described as follows in terms of being performed by
a system, which may include any element of any example
system as described above, with different elements of the
process potentially being performed by the same or different
system components. Process 500 may be performed entirely
by a system executing secure application environment 305 of
FIG. 3 in various example embodiments.

After process 500 begins (502), a system receives a source
template (504), and may also optionally receive a source
schema with the source template. The system converts the
source template into a secured template (506). The secured
template includes user-modifiable extension points, while the
secured template is not user-modifiable outside of the exten-
sion points. The system may also optionally modify a source
schema into a modified schema (508). The system may
optionally provide the secured template to an administrator
interface (510), where a user with administrator authorization
may have the option of changing one or more of the user-
modifiable extension points to non-user-modifiable. The sys-
tem may optionally provide the secured template to a user
interface (512), through which the system receives user input
comprising user-indicated modifications at one or more of the
extension points (514). The system may use any of a variety
of'means to receive the user input. In one illustrative example,
the system may include a web application running on a web
server and exchanging information with a browser running on
a client computing device. The web application may present
the secured template with a user interface in the browser, and
enable a user to enter user inputs defining the user-indicated
modifications at one or more of the extension points (514).
The system modifies the secured template into a custom
document with modifications to the one or more extension
points in accordance with the user-indicated modifications
(516). The system may optionally validate the custom docu-
ment with the modified schema (518). The system transforms
the custom document into a secured custom document (520)
that comprises the modifications to the one or more extension
points, and that is in a format that is executable using the
source schema associated with the source template. The sys-

15

20

25

30

35

40

45

50

55

60

65

16

tem may also optionally validate the secured custom docu-
ment with the source schema (522) prior to finishing (524).
Thus, the system performs a process 500 for generating
secured documents using a source template, in accordance
with an example embodiment.

The user-modifiable extension points may include user-
modifiable elements, and converting the source template into
the secured template may include adding an attribute to each
of one or more of the user-modifiable elements indicating a
property type of the element.

Converting the source template into the secured template
may include replacing one or more attributes in the source
template with one or more corresponding attribute definitions
in the secured template. Converting the source template into
the secured template may include replacing one or more
attributes, such as type, style, or color attributes, in the source
template with one or more corresponding child elements in
the secured template. Replacing one or more attributes in the
source template with one or more corresponding elements in
the secured template may include replacing a shared attribute
in the source template with individualized child elements in
the secured template.

Converting the source template into the secured template
may include making one or more file paths in the source
template non-user-modifiable in the secured template.

Providing the secured template to a user interface may
include providing options for a user with administrator autho-
rization to change one or more of the user-modifiable exten-
sion points to non-user-modifiable by a user without admin-
istrator authorization.

Process 500 may further include verifying that property
values of the indicated modifications are valid for the identi-
fied type for the indicated modifications, prior to transform-
ing the secured template into the secured custom document
that comprises modifications to the one or more extension
points in accordance with the indicated modifications.

Process 500 may further include converting the source
schema into a modified schema configured to validate the
custom document comprising the modifications to the one or
more extension points. This may further include verifying
that the custom document can be validated by the modified
schema, prior to transforming the custom document.

Process 500 may further include verifying that the secured
custom document can be validated by the source schema,
after transforming the custom document. Process 500 may
also include generating a visualization chart based on the
secured custom document.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing a specified logical function. It
should also be noted that, in some alternative implementa-
tions, the functions noted in the block may occur out of the
order noted in the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

US 9,224,010 B2

17

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising”, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
various aspects of the present invention has been presented
for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the invention. The embodiments
described above were chosen and described in order to
explain various principles of the invention and various prac-
tical applications thereof, and to enable others of ordinary
skill in the art to understand the invention for various embodi-
ments with various modifications as are suited to the particu-
lar use contemplated.

Various aspects of invention can take the form of an
entirely hardware embodiment, an entirely software embodi-
ment or an embodiment containing both hardware and soft-
ware elements. In one embodiment, the invention is imple-
mented in software, which includes but is not limited to
firmware, resident software, microcode, and other software
media that may be recognized by one skilled in the art.

While various aspects of the present invention have been
described in the context of a functioning computer system,
those of ordinary skill in the art will appreciate that one or
more aspects of the present invention are capable of being
distributed in the form of a computer readable medium of
instructions and a variety of forms. The computer readable
media may take the form of coded formats that are decoded
for actual use in a particular computer system.

A computer system suitable for storing and/or executing
program code includes at least one processor coupled directly
or indirectly to memory elements through a bus or other
communication fabric. The memory elements can include
local memory employed during actual execution of the pro-
gram code, bulk storage, and cache memories which provide
temporary storage of at least some program code in order to
reduce the number of times code is to be retrieved from bulk
storage during execution. Input/output or /O devices (includ-
ing but not limited to keyboards, displays, pointing devices,
etc.) can be coupled to the system either directly or through
intervening [/O controllers. One or more network adapters
may also be coupled to the system to enable the computer
system to become coupled to other computer systems or
remote printers or storage devices through intervening private
or public networks. The network adapters may include
modems, cable modems, and Ethernet cards, for example.

Based on the foregoing, various embodiments of a com-
puter system, method and program product are disclosed
herein for generating secured documents using a source tem-
plate. However, numerous modifications and substitutions
can be made without deviating from the scope of the present
invention. Therefore, the present invention is disclosed by
way of example and not limitation.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

What is claimed is:

1. A method implemented by a computing system to gen-
erate secured documents using a source template, the method
comprising:

receiving the source template that is configured in accor-

dance with a first format compatible with a first com-
puter program,
receiving a source schema associated with the source tem-
plate, the source schema defining the first format;

converting the source template into a secured template,
wherein the secured template is configured in accor-
dance with a second format compatible with a second
computer program, the second format being different
than the first format, wherein the first format is incom-
patible with the second computer program, and wherein
converting the source template into the secured template
comprises:
determining, by the computing system and based on indi-
cations contained in the source schema, one or more
parts of the source template where modification is per-
mitted, the one or more parts of the source template
comprising an element of the source template that ref-
erences a common style of the source template, and

adding, by the computing system, user-modifiable exten-
sion points at the determined one or more parts of the
source template to create the secured template, wherein
adding the user-modifiable extension points comprises
creating at least one child element of the element of the
source template and copying at least a portion of the
common style referenced by the element to the at least
one child element,

wherein the secured template is not user-modifiable out-

side of the user-modifiable extension points;

receiving user input comprising one or more user-indicated

modifications at one or more of the user-modifiable
extension points;

modifying the secured template into a custom document

with modifications to the one or more user-modifiable
extension points in accordance with the one or more
user-indicated modifications, wherein the custom docu-
ment is compatible with the second computer program;
and

transforming the custom document into a secured custom

document that comprises the modifications to the one or
more user-modifiable extension points and that is in a
format executable using the source schema, wherein the
secured custom document is compatible with the first
computer program, and wherein transforming the cus-
tom document into the secured custom document com-
prises:

creating a respective at least one individualized style

within the secured custom document; and

copying at least a portion of a style defined within the at

least one child element to the respective at least one
individualized style.

2. The method of claim 1, wherein the one or more parts of
the source template further comprise at least one user-modi-
fiable element, and wherein adding the user-modifiable
extension points further comprises adding an attribute to the
at least one user-modifiable element indicating a property
type of the element.

3. The method of claim 1, wherein adding the user-modi-
fiable extension points further comprises replacing one or
more attributes in the source template with one or more cor-
responding attribute definitions.

US 9,224,010 B2

19

4. The method of claim 1, wherein adding the user-modi-
fiable extension points further comprises replacing one or
more attributes in the source template with one or more cor-
responding child elements.

5. The method of claim 1, wherein converting the source
template into the secured template further comprises making
one or more file paths in the source template non-user-modi-
fiable in the secured template.

6. The method of claim 1, further comprising outputting,
via a user interface of the second computer program, the
secured template.

7. The method of claim 6, wherein outputting the secured
template comprises providing options for a user with admin-
istrator authorization to change one or more of the user-
modifiable extension points to non-user-modifiable for a user
without administrator authorization.

8. The method of claim 1, further comprising:

verifying that property values of the user-indicated modi-

fications are valid for an identified type for the user-
indicated modifications, prior to transforming the
secured template into the custom document that com-
prises the modifications to the one or more user-modi-
fiable extension points in accordance with the user-indi-
cated modifications.

9. The method of claim 1, further comprising:

converting the source schema into a modified schema con-

figured to validate the custom document comprising the
modifications to the one or more user-modifiable exten-
sion points.

10. The method of claim 9, further comprising:

verifying that the custom document can be validated by the

modified schema, prior to transforming the custom
document.

11. The method of claim 1, further comprising:

verifying that the secured custom document can be vali-

dated by the source schema, after transforming the cus-
tom document.

12. The method of claim 1, further comprising:

generating, via the first computer program, a visualization

chart based on the secured custom document.

13. A computer system to generate secured documents
using a source template, the computer system comprising:

one or more processors and one or more computer-readable

data storage devices;

program instructions, stored on at least one of the one or

more data storage devices for execution by atleast one of
the one or more processors, to receive the source tem-
plate that is configured in accordance with a first format
compatible with a first computer program;

program instructions, stored on at least one of the one or

more data storage devices for execution by atleast one of
the one or more processors, to receive a source schema
associated with the source template, the source schema
defining the first format;

program instructions, stored on at least one of the one or

more data storage devices for execution by atleast one of
the one or more processors, to convert the source tem-
plate into a secured template, wherein the secured tem-
plate is configured in accordance with a second format
compatible with a second computer program, the second
format being different than the first format, wherein the
first format is incompatible with the second computer
program, and wherein the program instructions to con-
vert the source template into the secured template com-
prise program instructions to:

determine, based on indications contained in the source

schema, one or more parts of the source template where

20

25

30

35

40

45

55

65

20

modification is permitted, the one or more parts of the
source template comprising an element of the source
template that references a common style of the source
template, and

add user-modifiable extension points at the determined one

or more parts of the source template to create the secured
template, wherein adding the user-modifiable extension
points comprises creating at least one child element of
the element of the source template and copying at least a
portion of the common style referenced by the element
to the at least one child element,

wherein the secured template is not user-modifiable out-

side of the user-modifiable extension points;
program instructions, stored on at least one of the one or
more data storage devices for execution by at least one of
the one or more processors, to receive a user input com-
prising one or more user-indicated modifications at one
or more of the user-modifiable extension points;

program instructions, stored on at least one of the one or
more data storage devices for execution by at least one of
the one or more processors, to modify the secured tem-
plate into a custom document with modifications to the
one or more user-modifiable extension points in accor-
dance with the one or more user-indicated modifica-
tions, wherein the custom document is compatible with
the second computer program; and
program instructions, stored on at least one of the one or
more data storage devices for execution by at least one of
the one or more processors, to transform the custom
document into a secured custom document that com-
prises the modifications to the one or more user-modi-
fiable extension points and that is in a format that is
executable using the source schema, wherein the
secured custom document is compatible with the first
computer program, and wherein the program instruc-
tions to transform the custom document into the secured
custom document comprise program instructions to:

create a respective at least one individualized style within
the secured custom document; and

copy at least a portion of a style defined within the at least

one child element to the respective at least one individu-
alized style.

14. The computer system of claim 13, wherein the program
instructions to convert the source template into the secured
template further comprise program instructions, stored on at
least one of the one or more data storage devices, to replace
one or more attributes in the source template with one or more
corresponding attribute definitions or child elements.

15. The computer system of claim 13, wherein the program
instructions to convert the source template into the secured
template further comprise program instructions, stored on at
least one of the one or more data storage devices, to make one
ormore file paths in the source template non-user-modifiable.

16. The computer system of claim 13, further comprising:

program instructions to convert the source schema into a

modified schema configured to validate the custom
document comprising the modifications to the one or
more user-modifiable extension points; and

program instructions to verify that the custom document

can be validated by the modified schema.

17. The computer system of claim 13, further comprising:

program instructions to verify that the secured custom

document can be validated by the source schema.

18. The computer system of claim 13, further comprising:

program instructions to provide options for a user with

administrator authorization to change one or more of the

US 9,224,010 B2

21

user-modifiable extension points to non-user-modifiable
for a user without administrator authorization.

19. A computer program product for generating secured
documents using a source template, the computer program
product comprising:

one or more non-transitory computer-readable media hav-

ing computer-readable program instructions stored
thereon, the computer-readable program instructions
comprising:

computer-readable program instructions to receive the 10

source template that is configured in accordance with a
first format compatible with a first computer program;

computer-readable program instructions to receive a
source schema associated with the source template, the
source schema defining the first format;

computer-readable program instructions to convert the
source template into a secured template, wherein the
secured template is configured in accordance with a
second format compatible with a second computer pro-
gram, the second format being different than the first
format, wherein the first format is incompatible with the
second computer program, and wherein the computer-
readable program instructions to convert the source tem-
plate into the secured template comprise computer-read-
able program instructions to:

determine, based on indications contained in the source
schema, one or more parts of the source template where
modification is permitted, the one or more parts of the
source template comprising an element of the source
template that references a common style of the source
template, and

add user-modifiable extension points at the determined one
ormore parts of the source template to create the secured
template, wherein adding the user-modifiable extension
points comprises creating at least one child element of
the element of the source template and copying at least a
portion of the common style referenced by the element
to the at least one child element,

wherein the secured template is not user-modifiable out-
side of the user-modifiable extension points;

computer-readable program instructions to receive a user
input comprising one or more user-indicated modifica-
tions at one or more of the user-modifiable extension
points;

computer-readable program instructions to modify the
secured template into a custom document with modifi-
cations to the one or more user-modifiable extension
points in accordance with the one or more user-indicated
modifications, wherein the custom document is compat-
ible with the second computer program; and

computer-readable program instructions to transform the
custom document into a secured custom document that

20

25

30

35

40

45

22

comprises the modifications to the one or more user-
modifiable extension points and that is in a format that is
executable using the source schema, wherein the
secured custom document is compatible with the first
computer program, and wherein the computer-readable
program instructions to transform the custom document
into the secured custom document comprise computer-
readable program instructions to:

create a respective at least one individualized style within

the secured custom document; and

copy at least a portion of a style defined within the at least

one child element to the respective at least one individu-
alized style.

20. The computer program product of claim 19, wherein
the computer-readable program instructions to convert the
source template into the secured template further comprise
program instructions, stored on at least one of the one or more
data storage devices, to replace one or more attributes in the
source template with one or more corresponding attribute
definitions or child elements in the secured template.

21. The computer program product of claim 19, wherein
the computer-readable program instructions to convert the
source template into the secured template further comprise
program instructions, stored on at least one of the one or more
data storage devices, to make one or more file paths in the
source template non-user-modifiable.

22. The computer program product of claim 19, wherein
the computer-readable program instructions further com-
prise:

computer-readable program instructions to convert the

source schema into a modified schema configured to
validate the custom document comprising the modifica-
tions to the one or more user-modifiable extension
points; and

computer-readable program instructions to verify that the

custom document can be validated by the modified
schema.

23. The computer program product of claim 19, wherein
the computer-readable program instructions further com-
prise:

computer-readable program instructions to verify that the

secured custom document can be validated by the source
schema.

24. The computer program product of claim 19, wherein
the computer-readable program instructions further com-
prise:

computer-readable program instructions to make the user-

modifiable extension points non-user-modifiable by a
user with administrator authorization.

#* #* #* #* #*

